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Abstract—Robotic detection of people in crowded and/or 
cluttered human-centered environments including hospitals, 
stores and airports is challenging as people can become occluded 
by other people or objects, and deform due to clothing or pose 
variations. There can also be loss of discriminative visual 
features due to poor lighting. In this paper, we present a novel 
multimodal person detection architecture to address the mobile 
robot problem of person detection under intraclass variations. 
We present a two-stage training approach using: 1) a unique 
pretraining method we define as Temporal Invariant 
Multimodal Contrastive Learning (TimCLR), and 2) a 
Multimodal YOLOv4 (MYOLOv4) detector for finetuning. 
TimCLR learns person representations that are invariant under 
intraclass variations through unsupervised learning. Our 
approach is unique in that it generates image pairs from natural 
variations within multimodal image sequences and contrasts 
crossmodal features to transfer invariances between different 
modalities. These pretrained features are used by the 
MYOLOv4 detector for finetuning and person detection from 
RGB-D images. Extensive experiments validate the performance 
of our DL architecture in both human-centered crowded and 
cluttered environments. Results show that our method 
outperforms existing unimodal and multimodal person detection 
approaches in detection accuracy when considering body 
occlusions and pose deformations in different lighting.  
 

Index Terms— Robotic Person Detection, RGB-D Features, 
Deep Contrastive Learning, Intraclass Variations, 
Cluttered/Crowded Environments 

I. INTRODUCTION 
obots need to be able to autonomously detect multiple   
people in various human-centered environments to 

engage in effective human-robot interactions. Namely, person 
detection applications range from long-term care, retirement 
and private home settings, where interactive robots search for 
users to provide assistance with activities of daily living [1], 
product searches in retail stores [2], [3], direction guidance in 
airports [4] and hospitals [5], [6], and search for victims in 
urban search and rescue environments (USAR) [7]. 

In general, human-centered environments can be crowded 
and cluttered with multiple dynamic people and objects, 
resulting in person and body part occlusions [7]. Furthermore, 
as people move or interact in the environment, they can 
undergo deformation due to both variations in clothing and 
body articulation [8]. These environments can also have 

variable illumination due to both natural and artificial lighting 
sources [9], which can result in appearance changes despite 
intrinsic properties of the person (e.g., shape) not changing 
[9]. These variations can be defined as intraclass variations.  

Classical learning approaches have been used to detect 
people by a mobile robot [10]–[13] by extracting a set of 
expert handcrafted features, such as HOG features [10]–[13], 
from upright people [14]. However, people exhibit a variety 
of poses including sitting, lying down, etc. Deep learning (DL) 
approaches address the limitations of classical learning 
methods by autonomously learning feature extraction using 
convolutional neural networks (CNN), without having human 
experts extract handcrafted features. Thus, they can 
generalize to people in different poses and postures [15]. 

To-date, robots use off-the-shelf DL object detectors to 
detect people in indoor environments. The methods include: 
1) You Only Look Once (YOLO) [16] used in [17], 2) Single 
Shot MultiBox Detector (SSD) [18] used in [19], 3) RetinaNet 
[20] used in [7], and 4) Faster R-CNN (FRCNN) [21] used in 
[5], [6]. These methods detect people using unimodal CNNs 
from RGB images taken from a single camera on a robot. 
However, they have difficulty in cluttered environments with 
varying illumination, as visual features necessary for 
discriminating people from their backgrounds become less 
prominent. Furthermore, these DL methods are limited to 
unimodal CNNs as off-the-shelf multimodal pretrained 
weights do not exist [22], [23].  

To address intraclass variations in DL person detection 
methods, data augmentation has been used to increase the 
training data [7]. However, this cannot capture the majority of 
variations due to low probability of occurrence [24]. 
Unsupervised contrastive learning (CL) can be used to 
address intraclass variations by pretraining a multimodal 
model to learn invariant features from scratch and from 
unlabeled data [25]. CL approaches have been used to learn 
representation invariances by contrasting between images of 
different viewpoints of the same static objects in constant 
lighting conditions [26]. Thus, they have the potential to learn 
representations which are invariant to intraclass variations. 
Unlabelled data is relatively inexpensive as a robot can be 
deployed to autonomously collect multimodal data directly 
from human-centered environments without the need for 
manual labelling. Recently, CL methods have been used in a 
handful of robotic applications [26]–[28]. However, to-date, 
CL has not been applied to robotic person detection. 

In this paper, we present a novel multimodal DL person 
detection architecture for mobile robots which uses a two-
stage training approach consisting of: 1) Temporal Invariant 
Multimodal Contrastive Learning (TimCLR) for pretraining, 
and 2) Multimodal YOLOv4 (MYOLOv4) for finetuning. For 
prediction, the trained MYOLOv4 detector is used for 
autonomous person detection from RGB-D data. We have 
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developed a new pretraining method, TimCLR, to pretrain a 
multimodal CNN model from unlabelled RGB-D data in 
human-centered environments. TimCLR incorporates 
intraclass variations by generating multimodal image pairs 
from sampling video frames within a short temporal interval, 
and contrasting person representations within and between 
modalities, in addition to augmented data. This captures the 
natural variations in appearance (lighting, occlusions and 
pose deformations) as people move in their environments. 
Our overall approach is unique in that it uses CL to consider 
natural variations in the environment obtained from 
multimodal features, as well as uniquely incorporates CL 
within a fusion backbone network to contrast multimodal 
features. Thus, our approach does not require pretrained RGB 
weights or expert handcrafted mappings. We present 
extensive experiments to verify that our DL architecture 
outperforms existing DL detection methods in human-
centered crowded (with dynamic people) and cluttered (with 
objects) environments under varying lighting conditions. 

II. RELATED WORKS 
In this section, we discuss the existing DL methods developed 
for robots to detect multiple dynamic people in human-
centered environments and we further introduce CL methods 
and their current robotic applications.   

A. Person Detection by Robots 
Existing person detection methods for robotic applications 

in indoor environments consist of: 1) single-stage detectors 
including YOLO [7], [17], [29], [30], SSD [7], [19], and 
RetinaNet [7]; and 2) two-stage detectors including FRCNN 
[5]–[7]. In [17], [29], [30], YOLO was used with RGB images 
for a robot to detect and follow a person to provide assistance. 
In [19], an SSD detector was used for the same task. All 
detectors were initialized using off-the-shelf RGB weights 
which were pretrained on ImageNet [31]. In [5], [6], FRCNN 
was used to find people with mobility aids in populated 
environments by a robot using RGB and depth networks which 
were pretrained on ImageNet. As off-the-shelf RGB weights 
require 3 input channels, depth images were preprocessed 
using ColorJet. In our prior work [7], detectors were compared 
for person/body part detection in cluttered USAR settings 
from RGB-D images. All the detectors used off-the-shelf 
RGB weights and were trained by compressing the RGB-D 
image from 4 to 3 channels with a handcrafted method. 

B. Contrastive Learning Methods 
Contrastive learning methods learn representations through 

similarities/dissimilarities between pairs of images without 
the need for expert labels [32]. CL methods can be image-
based [25], [28], [33] or video-based [26], [27] input type. 
Image-based methods generate views by applying random 
data augmentation to the same image [32]. Video-based 
methods generate diverse views using natural transformations 
from frames in a video sequence [26] or from various video 
sequences [27]. The image-based MoCo v3 [25] has been 
applied to object detection, which generates image pairs by 
applying data augmentations twice on the same RGB image 
[25]. MoCo v3 has higher detection accuracy than other 
image-based methods, including supervised methods [25], 

[33]. Thus, it has the potential to be applied to robotic person 
detection. However, it does not consider temporal variations. 

CL methods have been used in a handful of robotic 
applications [26]–[28]. In [26], a video-based CL method 
learned robot manipulation behaviors by imitating human 
interactions from videos in an indoor room with constant 
lighting. A network was pretrained to learn viewpoint-
invariant features from RGB images by contrasting between 
viewpoints of the same scene from different video sequences. 
In [27], a video-based CL method was used for object 
discovery by a robot to learn representations of unseen objects 
in a constant lighting room. This included recognizing and 
matching an unknown object seen previously to learn 
viewpoint invariant features from RGB videos. In [28], an 
image-based CL method was used for robot navigation in a 
smoked filled environment. CL was applied to learn smoke-
invariant representations from LIDAR and radar.  

Multimodal CL image-based methods have been used in a 
handful of papers [35]-[38]. In [35], an image-based RGB-D 
CL method was proposed to improve representation learning. 
Negative RGB-D image pairs were generated by replacing the 
RGB or depth image of a positive pair with that of another 
pair from a different scene. In [36], an RGB-D CL method 
was proposed for scene understanding using 3D point clouds 
and RGB images. Negative point-pixel sample pairs were 
generated by swapping pixels between positive pairs from 
different scenes. In [37], an image-based method was 
proposed for applications where the number of sensors used 
could change between training and deployment. An RGB and 
depth network with shared weights was trained using a 
multiscale CL method [39]. During deployment, either RGB 
or depth images were used for object recognition. In [38], an 
image-based CL method was proposed for multimodal image 
registration, which enforced rotational equivariance by 
incorporating a constraint into the objective function. 
C. Summary of Limitations 
Existing robotic person detection methods have used 
unimodal CNNs with off-the-shelf RGB weights pretrained 
on ImageNet, except in [7]. RGB-only approaches have 
difficulties detecting people under poor lighting due to 
underexposure [40]. While [7] incorporates RGB-D data, it 
uses pretrained RGB weights with handcrafted heuristics. To 
avoid this, off-the-shelf RGB-D weights are required, which 
do not exist. Although an alternative is to train from scratch 
using supervised DL methods, RGB-D robotic datasets [6], 
[7], [41] with detection labels are small, especially compared 
to ImageNet used during pretraining, or MS COCO used to 
train RGB detectors from scratch. This can result in 
overfitting [42]. Instead of using off-the-shelf weights, 
handcrafted heuristics, or large amounts of annotated data, CL 
can be used to pretrain RGB-D models from unlabeled data. 
 Image-based CL methods do not consider intraclass 
variations. Video-based CL methods, used in a handful of 
robotic applications, consider temporal variations within 
RGB images, but have only been applied to learn viewpoint-
invariant features of static objects in constant lighting 
environments [26], [27]. Moreover, video-based methods 
have not incorporated data augmentation, thereby resulting in 
feature suppression which degrades representation quality 
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[43]. Alternatively, multimodal CL methods [35]–[38] are 
image-based methods, consisting of separate backbones for 
each individual modality. However, these methods cannot be 
directly applied to pretrain our detector which incorporates a 
fusion backbone network to effectively utilize multiple 
modalities for person representations. To address the above 
limitations, we present TimCLR, a CL method to generate 
image pairs by uniquely combining both data augmentations 
and temporal variations from multimodal images within a 
short temporal interval. In addition to contrasting features 
between modalities to transfer invariances learned from one 
modality to another, we use a fusion backbone to contrast 
multimodal features. We incorporate this as our novel first 
stage TimCLR pretraining method, whose weights are then 
transferred to the second stage MYOLOv4 detector for 
finetuning and detecting people in RGB-D images. 

III. PERSON DETECTION METHODOLOGY 
We propose a person detection architecture to detect multiple 
dynamic people or body parts from RGB-D images in human-
centered environments. The proposed architecture, Fig. 1, 
consists of two training stages: 1) a TimCLR stage, using CL 
for unsupervised pretraining to learn RGB-D person and body 
part representations which are robust to intraclass variations, 
and 2) a MYOLOv4 stage for supervised finetuning. For 
prediction, RGB-D images are passed into MYOLOv4 to 
detect multiple people/body parts. We selected the state-of-
the-art (SOTA) YOLOv4 as it incorporates Path Aggregation 
Network (PAN) to detect people/body parts at multiple scales 
[44], which can improve detection under occlusions. 
 The TimCLR stage uses an unlabeled sequence of RGB-D 
images as inputs. RGB-D image pairs are generated by the 
Sampling module by sampling frames within a short temporal 
interval. These pairs capture natural variations in an 
environment by considering similar scenes under different 
conditions. The Augmentation module applies data 
augmentation to each RGB-D image in the image pair. The 
Multimodal Feature Extraction & Fusion (MFEF) module 
passes RGB-D images into the encoders to extract RGB, 
depth, and RGB-D person representations. The Crossmodal 
(CM) module maximizes the contrastive loss of those 
representations generated by the unimodal and fusion 
backbones. TimCLR weights are transferred to the next stage.  

 The MYOLOv4 stage uses labelled RGB-D images and the 
pretrained weights from TimCLR for finetuning. MYOLOv4 
adopts the YOLOv4 structure of a PAN and YOLOv3 head 
[44], Fig. 1. The RGB backbone is replaced with a subset of 
the TimCLR backbone layers. The weights from TimCLR are 
used to initialize MYOLOv4 for training. MYOLOv4 outputs a 
bounding box for each detected person within the image. 

A. Temporal Invariant Multimodal Contrastive Learning 
TimCLR provides different views by combining both data 
augmentation and natural variations in the environment 
obtained from a sequence of RGB and depth images. The 
main modules of TimCLR are discussed below. 
1) Sampling  
The Sampling module samples pairs of RGB and depth 
images from a multimodal dataset 𝓓, consisting of sequences 
of unlabeled images containing people performing activities 
in a human-centered environment. These sequences capture 
people (and body parts) undergoing natural variations in 
occlusion, pose deformation, and lighting. Image pairs are 
sampled within a short temporal interval Δ!. Let (x"#$% , x"&) 
and (x'#$% , x'&) be RGB-D images sampled at times 𝑡" and  𝑡', 
an image pair is represented as: 

&(x"#$% , x"&), (x'#$% , x'&))	~	𝓓 ×𝓓. (1) 
2) Augmentation 
The Augmentation module applies a set of transformations to 
each sample pair of images from Eq. (1), which relate two 
multimodal views representing the same people under 
different conditions. Namely, the following MoCo v3 
transformations are randomly applied [25]: cropping, color 
jittering, grayscaling, gaussian blurring, and horizontal 
flipping. Let T𝟏, T𝟐	~	𝓣 be the composite of those 
transformations, and 	x0"	and x0' be the transformed images: 

(x0"#$% , x0"&) = T𝟏(x"#$% , x"&), (2) 
(x0'#$% , x0'&) = T𝟐(x'#$% , x'&). (3) 

The output  RGB-D image pairs (&x0"
#$% , x0"

&), &x0'
#$% , x0'

&)) 
represent two augmented views of people under different 
natural variations. 
3) Multimodal Feature Extraction & Fusion 
The MFEF module extracts and fuses features from the pairs 
of RGB-D transformed views to produce RGB, depth, and 

 
Fig. 1: Proposed multimodal DL detection architecture with first stage TimCLR and second stage MYOLOv4 detector.  
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RGB-D person representations. It consists of an encoder f*, 
and momentum encoder  f+ [25].  Each RGB-D image pair is 
passed into both networks to extract three representations: 
𝒒,#$%&, 𝒒,#$% , 𝒒,& = f*&x0,#$% , x0,&; 𝜽𝒒), 𝑖 ∈ {1,2} (4) 
𝒌,#$%&, 𝒌,#$% , 𝒌,& = f+(x0,#$% , x0,&; 𝜽𝒌), 𝑖 ∈ {1,2} (5) 

where 𝜽𝒒 and 𝜽𝒌 are the weights of the network, and 
𝒒,#$%&, 𝒒,#$% , 𝒒,& and 𝒌,#$%&, 𝒌,#$% , 𝒌,& are the feature 
representations of view 𝑖 of each modality for the encoder, 
and momentum encoder, respectively [25]. The encoder 
weights 𝜽𝒒 are updated by back-propagation [25]. The 
momentum weights 𝜽𝒌	are updated by a weighted average of  
𝜽𝒒 and 𝜽𝒌	[25], where 𝑚 is the momentum coefficient: 

𝜽𝒌 ← 𝑚	𝜽𝒌 + (1 −𝑚)	𝜽𝒒.	 (6) 
Each encoder consists of separate RGB and depth 

backbones, fusion backbones, and multilayer perceptrons 
(MLPs), with weights 𝜽𝒍𝑹𝑮𝑩, 𝜽𝒍𝑫, 𝜽𝒍𝑹𝑮𝑩𝑫, 𝜽𝒍𝑴𝑳𝑷 ∈ 𝜽𝒍, 𝒍 ∈
{𝒒, 𝒌}, respectively. Each backbone uses a modified ResNet-
18 model. The standard RGB ResNet-18 consists of 5 
convolution blocks (C1-C5), fully connected (FC), and a 
SoftMax layer [45]. Our RGB and depth backbones extract 
RGB and depth features each consisting of C1-C3 blocks, Fig. 
1. A fusion backbone is used to concatenate the feature maps 
of each of the C3 blocks, followed by a 1x1 convolution layer, 
and C4-C5, Fig. 1. MLPs, consisting of two FC layers, are 
added to the output of the fusion backbone to extract RGB-D 
representations. Additional MLPs are added to the output of 
the RGB and depth backbone layers to extract unimodal 
representations, Fig. 1. The output representations from the 
encoders (𝒒,#$%&, 𝒒,#$% , 𝒒,&), and (𝒌,#$%&, 𝒌,#$% , 𝒌,&), 𝑖 ∈
{1,2} are passed to the Crossmodal module.  
4) Crossmodal 
The Crossmodal module computes representation similarity 
scores using the contrastive loss, ℒCL, based on InfoNCE  [25]: 

ℒCL	(𝒒, 𝒌) = 𝔼# *log
exp(𝒒 ⋅ 𝒌$ 𝜏⁄ )

exp(𝒒	 ⋅ 𝒌$ 𝜏⁄ ) + ∑ exp(𝒒 ⋅ 𝒌% 𝜏⁄ )𝒌!
	6, (7) 

where 𝑄 = {𝒒", … . , 𝒒7} is the set of representations from the 
mini-batch; {𝒌"8, … , 𝒌78} and {𝒌"9, … , 𝒌79} are the set of 
representations corresponding to positive and negative image 
pairs; and 𝜏 is the temperature [25]. The RGB-D contrastive 
loss to measure similarity between representations is: 

ℒ'()* 	= ℒCL	(𝒒+'()*, 𝒌,'()*) + ℒCL	7𝒒𝟐'()*, 𝒌+'()*8. (8) 
The crossmodal contrastive losses to measure similarity 
between unimodal RGB and depth representations are: 

ℒ'(),* 	= ℒCL	(𝒒+'(), 𝒌,*) + ℒCL	7𝒒𝟐'(), 𝒌+*8, (9) 
ℒ*,'() 	= ℒCL	(𝒒+*, 𝒌,'()) + ℒCL	7𝒒𝟐*, 𝒌+'()8. (10) 

The full contrastive loss which is the combination of all the 
aforementioned losses is defined as: 

ℒMCL 	= 𝜆'()*ℒ'()* + 𝜆'(),*ℒ'(),* +	𝜆*,'()ℒ*,'(), (11) 
where 𝜆#$%&, 𝜆#$%,&, and 𝜆&,#$% are the weighting factors.  
The encoder weights 𝜽𝒒 are passed to the MYOLOv4 stage. 

B. Multimodal YOLOv4 
MYOLOv4, Fig. 1, adopts its structure from YOLOv4 [44]. 

It consists of MFEF, PAN, and YOLOv4 head modules. 
MFEF extracts feature maps from RGB and depth images 
using separate RGB and depth backbones each consisting of 

C1-C3 blocks which are initialized by 𝜽𝒒𝑹𝑮𝑩 and 𝜽𝒒𝑫, the 
unimodal backbones weights in TimCLR. These backbones 
are fused by concatenation with a 1x1 convolution layer, 
followed by a C4 block, which is initialized by 𝜽𝒒𝑹𝑮𝑩𝑫,	the 
fusion backbone weights in TimCLR. The PAN module uses 
C3 and C4, and consists of a Spatial Pyramid Pooling (SPP) 
block [44], and top-down/bottom-up pathways to aggregate 
features at different scales. SPP, C4, and C3 are concatenated 
after each upsampling layer, respectively. The bottom-up 
pathway consists of convolutions to produce feature maps of 
the same scales, with lateral connections to concatenate the 
corresponding top-down feature map. The YOLOv3 head 
module uses these feature maps to predict people/body parts 
at each scale. MYOLOv4 is first trained through supervised 
learning and used during prediction to output a bounding box 
for each detected person or body parts within an image. 

IV. DATASETS 
We used a number of datasets to train our architecture for  
mobile robot person detection under intraclass variations: 
1) NTU RGB+D 120 dataset [46] which consists of multiple 
people performing 120 different actions (e.g., standing, 
eating, jumping) in indoor environments with 114,480 RGB-
D video samples collected by a Kinect sensor. NTU naturally 
captures the intraclass variations that would be expected in a 
real-world human-centered environment.  
2) MS COCO dataset [34] which consists of 123,000 RGB 
images of general objects with 250,000 person instances in 
indoor/outdoor environments. The entire dataset was used for 
training to learn semantically rich RGB person features.  
3) MA dataset [5] which consists of 17,000 annotated RGB-
D images of multiple dynamic people undergoing frequent 
occlusions in a crowded real-world hospital environment, 
collected by a Kinect sensor on a robot. The dataset contains 
5 classes of people with different aids. We have relabeled and 
combined these multiple classes into a generalized single 
person class. The dataset was split 65/35 for training/testing. 
The test sets (TS), from [5], are: 1) TS1 (few people 
occlusions), and 2) TS2 (frequent people occlusions).  
4) USAR dataset [7] which consists of 570 RGB-D images 
of human/mannequin body parts in a real-world cluttered 
environment, collected by a Kinect sensor on a Turtlebot 2 
robot. The dataset contains 6 classes: arm, foot, hand, head, 
leg, and torso; split using an 80/20 rule, with 3 test datasets: 
1) TS1 (contains fully visible people), 2) TS2 (contains partial 
person or body part occlusions and deformations), and 3) TS3 
(contains people under low lighting conditions). 
5) IOD dataset [47] which consists of 8,300 annotated RGB-
D images of multiple dynamic people under changing lighting 
conditions in both indoor and outdoor university campus 
environments, collected by a Kinect sensor on a robot. The 
dataset contains a single person class.  

V. TRAINING 
The proposed person detection architecture was trained in two 
stages: 1) TimCLR, and 2) MYOLOv4. For TimCLR 
pretraining,  a subset of the unlabeled NTU dataset of 1 
million RGB-D images was used, generated by randomly 
selecting from the 114,480 videos in the dataset. Image pairs 
were sampled at Δ!= 50 frames. TimCLR was trained for 100 
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epochs. For finetuning MYOLOv4, the RGB branch of 
MYOLOv4 was first finetuned using the TimCLR weights on 
the MS COCO dataset. For evaluation on the MA, USAR, and 
IOD test sets, MYOLOv4 was additionally finetuned only on 
the corresponding training set using stochastic gradient 
descent with a learning rate of 0.01 for 26 epochs.  

VI. EXPERIMENTS 
Our proposed two-stage person detection architecture is 
investigated in three sets of experiments: 1) a comparison 
study with existing robot person detection methods to 
evaluate detection accuracy, 2) an ablation study to validate 
the design choices of our architecture, and 3) a comparison 
study with contrastive learning methods. Three environments 
with varying levels of person occlusion, illumination, and 
deformation were considered, from which RGB-D images 
have been taken by a mobile robot. All experiments were 
trained on a workstation with two RTX 3070 GPUs, an AMD 
Ryzen Threadripper 3960X, and 128GB of memory.  
A. Performance Metrics 
The mean average precision (mAP) was chosen as the 
performance metric for detection accuracy. AP50 is the mAP 
where predictions with an Intersection over Union (IoU) > 0.5 
are considered true positives. AP0.5:0.95, or AP, is the averaged 
mAP over IoU = {0.5, 0.55, …, 0.95}, which more accurately 
measures localization [34], and is the primary accuracy 
metric. We also measured the memory usage and inference 
speed in frames per second (FPS) on an Nvidia Jetson AGX 
Xavier platform using the TensorRT framework. 
B. Comparison Methods 
Our person detection method was compared against existing 
DL RGB person detection methods, including RGB: 1) SSD-
300 [18], 2) RetinaNet-FPN [20], 3) FRCNN [21], 4) 
YOLOv4 [44], and 5) EfficientDet-D0 [48]; 6) depth ColorJet 
(CJ) FRCNN [6] which uses CJ to preprocess depth images 
into 3-channels; and 7) RGB-D Compression (C) FRCNN [7] 
which uses compression to preprocess RGB-D images. Please 
note that distinct from [6], we are optimizing the mAP for 
detecting individual people in a scene rather than five specific 
different mobility aids. We also designed the following RGB-
D strong baselines: 8) CJ-MYOLOv4, 9) CJ Multimodal 
FRCNN (CJ-MFRCNN), and 10) CJ Multimodal EfficientDet 
(CJ-MEfficientDet). We also compare against RGB-D 
TimCLR + MFRCNN, which uses our TimCLR method with 
the two-stage detector FRCNN which has been found to be 
accurate in detecting people in both crowded and cluttered 
environments [49], [50]. By comparing with RGB-D 
TimCLR + MFRCNN, we investigate the ability of TimCLR 
to learn invariant person features regardless of the specific 
finetuning method used. Finally, we compare against the top 
four SOTA methods which obtain the highest AP from the 
literature reported on the IOD dataset: 1) RGB-D Mixture of 
Deep network Experts (MoDE) detector [47], 2) depth-based 
Fast Region Proposal Generation with FRCNN (Depth 
FRPG-FRCNN) [5], 3) RGB-D FRCNN Y-fusion [51], and 
4) RGB-D FRCNN U-fusion detector [51]. The MoDE 
detector uses a mixture of expert CNNs for RGB, depth, and 
optical flow, with a gating network to weigh the classifier 
outputs of each expert. The Depth FRPG-FRCNN detector 

uses a depth-based method to generate initial proposals from 
point clouds using Euclidean clustering, followed by FRCNN 
for detecting people. RGB-D FRCNN Y-fusion and U-fusion 
detectors incorporate FRCNN to detect people by fusing RGB 
and depth backbone feature outputs and classifier outputs. 
Off-the-shelf ImageNet pretrained weights were used. 

We pretrained the networks on the NTU dataset, the same 
dataset used to train TimCLR, to ensure comparison fairness. 
To serve as strong baselines, we also pretrained with the 
unsupervised MoCo v3, as the NTU dataset (unlike 
ImageNet), does not provide classification labels. The 
exception being TimCLR + MFRCNN which is pretrained 
using the procedure in Section V. All networks were 
pretrained using ResNet-18 for 100 epochs, except for the 
EfficientDet methods which used  EfficientNet-B0 backbone 
[48]. We used the smaller ResNet with 18 layers to meet the 
inference requirements of robotic applications. The networks 
were finetuned using the procedure from Section V. 
C. People Detection Comparison Results 
The detection accuracy results for our proposed method and 
all comparison methods are presented in Table I. Our 
proposed TimCLR + MYOLOv4 detector outperformed the 
other methods with respect to AP and AP50 on all test sets 
(TS), including on 1) partial occlusions (MA/USAR TS2), 2) 
deformations (USAR TS2), and 3) varying illuminations 
(USAR TS3, IOD TS). The results show TimCLR’s ability to 
learn invariant person features. Namely, our method 
outperformed all the RGB-only networks. While the RGB 
approaches generally outperformed the depth-only methods, 
they performed worse under varying lighting (USAR TS3).  

Worth noting is that our proposed method outperformed the 
strong multimodal baselines that we designed which were all 
pretrained on MoCo v3. This further highlights the direct 
performance benefits due to TimCLR. For example, TimCLR 
+ MYOLOv4 outperformed RGB-D CJ-MYOLOv4 with 11% 
and 22% improvements in AP under partial occlusions on the 
MA and USAR datasets, respectively. Under varying lighting, 
it achieved a 5% and 10% improvement in AP on the IOD and 
USAR datasets. These results are statistically significant,	𝑝 <
0.001. In general, TimCLR was more effective than CJ at 
capturing depth features for differentiating people/body parts 
from background clutter (USAR TS2) and under poor lighting 
(USAR TS3, IOD TS). Compared to RGB-D C-FRCNN, our 
method had improvements of 16-40% on AP across all test 
sets. We postulate that RGB-D C-FRCNN had difficulties in 
estimating the extent of a person/body part under occlusions, 
as visual features may be lost during compression. Thus, our 
method accurately localizes multiple people/body parts with 
a greater overlap between the predictions and ground truth.  

Furthermore, our method outperformed RGB-D TimCLR 
+ MFRCNN across all test sets, despite the latter 
incorporating a two-stage detector. This is a result of PAN in 
YOLOv4 which allows for detection of body parts at multiple 
scales. Thus, our method is more effective at detecting body 
parts when discriminative features occupy smaller regions 
due to occlusions or poor lighting, as seen by larger 
improvements in AP on TS2-3 compared to TS1. Overall, our 
TimCLR-based methods were more accurate and robust in 
cluttered/crowded environments. Thus, TimCLR can be 
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applied to pretrain any SOTA detector with high accuracy.  
Our TimCLR-based methods also outperform the four 

SOTA methods on the IOD dataset, with TimCLR + 
MYOLOv4 achieving up to 38% improvements in AP50. This 
illustrates the advantages of TimCLR for learning lighting 
invariant features. Fig. 2 presents example detections of our 
TimCLR + MYOLOv4 method (Fig. 2(a)) compared to RGB-
D CJ-MYOLOv4 (Fig. 2(b)), the best RGB-D baseline; and 
RGB-D C-FRCNN, the best robotic person detection baseline 
(Fig. 2(c)). Fig. 2 shows these methods under partial 
occlusions (rows 1-2), pose deformation (row 2), and poor 
lighting (row 3), on the MA (row 1), USAR (row 2), and IOD 
(row 3) datasets. For example, row 2 shows a person partially 
occluded by rubble and a mannequin in the fetal position, and 
row 3 shows three people under low lighting. Our method 
identified all the people in Fig. 2(a) rows 1 and 3; and it was 
the only method to detect the partially occluded right foot in 
the second scene. While RGB-D CJ-MYOLOv4 detected a 
part of the left leg in Fig. 2(b), it did not capture the articulated 
portion of the leg as our method did. 

 
 

A non-parametric Kruskal-Wallis test was performed on all 
the datasets, showing a statistically significant difference in 
AP between the multimodal methods. A post-hoc Dunn test 
with Bonferroni correction showed our TimCLR + MYOLOv4 
had a statistically significant higher AP than the alternatives. 
The statistical test results are provided on our lab website1. In 
general, the YOLOv4 detectors had the lowest memory usage, 
with the fastest inference of 41-42 FPS. Thus, our TimCLR + 
MYOLOv4 is most suited for mobile robot detection of people 
in human-centered cluttered and crowded environments. 
D. Ablation Study 
We performed an ablation study to evaluate the design of our 
proposed detection architecture. We investigated TimCLR 
with respect to: 1) image pair generation, 2) fusion design, 
and 3) crossmodal loss. We evaluated each design choice 
based on the detection accuracy of MYOLOv4 using the 
pretrained weights from TimCLR, presented in Table II.  

In experiment 1, we investigated generating positive image 
pairs, using: 1) data augmentation, 2) natural variations, and 

 
                            (a) TimCLR + MYOLOv4 (our method)          (b)  RGB-D CJ-MYOLOv4                      (c)  RGB-D C-FRCNN 
Fig. 2: Multimodal detection results from: (a) TimCLR + MYOLOv4 (ours), (b) RGB-D CJ-MYOLOv4, (c) RGB-D C-FRCNN; overlaid on RGB images. 
1http://asblab.mie.utoronto.ca/sites/default/files/Supplementary%20Material%20TimCLR.pdf  
 
 

TABLE I  COMPARISON OF DETECTION ACCURACY OF OUR PROPOSED DETECTION METHOD VERSUS EXISTING DETECTION METHODS 
Dataset 

 
Method 

Mobility Aids (MA) USAR IOD Mem 
(GB) FPS Test Set 1 Test Set 2 

Occlusion 
Test Set 1 Test Set 2 

Occlusion + Deformation 
Test Set 3  
Illumination 

Test Set 

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50   
RGB-D TimCLR + MYOLOv4 60.10 94.30 49.20 75.30 22.30 45.80 21.10 49.60 20.20 44.40 63.40 96.70 1.4 41 
RGB-D TimCLR + MFRCNN 58.81 94.05 47.23 75.41 22.02 45.80 17.95 40.29 18.60 37.07 63.12 96.44 2.1 4 
RGB YOLOv4 [44] 55.90 87.40 44.40 70.11 15.50 35.80 14.90 34.40 15.10 34.20 60.50 91.90 1.4 42 
RGB FRCNN [21] 55.63 92.74 44.85 73.49 14.52 37.45 15.73 35.47 10.32 29.55 49.90 85.84 2.1 4 
RGB EfficientDet [48] 55.52 87.26 44.66 75.41 15.36 37.78 13.71 37.36 16.11 35.85 59.70 90.86 2.0 25 
RGB SSD [18] 35.70 87.91 26.98 71.57 10.70 30.04 11.21 32.83 8.62 30.81 38.60 58.47 2.0 14 
RGB RetinaNet [20] 52.06 93.33 42.89 75.20 13.80 34.95 14.21 33.13 13.65 28.18 55.92 85.41 1.5 19 
Depth CJ-FRCNN [6]   41.36 84.27 32.95 67.28 10.98 25.76 9.87 26.70 17.63 34.84 44.64 67.97 2.1 19 
RGB-D C-FRCNN [7] 47.86 90.00 40.51 73.43 15.92 38.84 15.72 41.59 18.27 35.42 51.57 88.52 2.1 4 
RGB-D CJ-MFRCNN  56.20 92.84 45.75 70.38 20.50 44.28 17.18 41.60 18.28 35.94 55.36 92.77 2.1 4 
RGB-D CJ-MYOLOv4 57.40 89.20 45.20 71.40 20.90 44.70 17.30 41.20 18.30 40.60 60.80 92.90 1.4 41 
RGB-D CJ-MEfficientDet 56.90 87.75 45.71 74.54 20.05 44.68 17.02 40.62 17.80 40.45 60.68 92.06 2.0 24 
Depth FRPG-FRCNN [5] - - - - - - - - - - - 70.00 - 23 
RGB-D MoDE [47] - - - - - - - - - - - 80.40 - - 
RGB-D FRCNN Y-fusion [51] - - - - - - - - - - - 90.10 - 5 
RGB-D FRCNN U-fusion [51] - - - - - - - - - - - 94.40 - 3 
Note: all missing values above (denoted ‘-’) were not reported.     
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3) a combination. Pretraining using only data augmentation 
outperforms using only natural variations on TS1 as a result 
of feature suppression. However, they perform similarly 
under intraclass variations (TS2-3). During feature 
suppression, the network may ignore texture or shape features 
as other cues (e.g., color distributions) can be used to 
differentiate between pairs. The combined approach avoids 
this, achieving higher detection accuracy, while still 
incorporating natural variations. In experiment 2, we 
investigated the fusion of RGB and depth features at C3, C4, 
or C5 encoder blocks. We found that C3 was the optimal layer 
to fuse. Finally, we investigated the crossmodal contrastive 
loss which contrasts representations between RGB and depth 
for evaluating the transfer of knowledge between modalities. 
We performed runs with and without this loss. The run with 
the loss performed similarly on TS1, but substantially better 
under intraclass variations (TS2-3). One possible reason is 
that contrasting of features between modalities encourages 
representations between them to be similar, thus transferring 
learned feature invariances from one modality to the other.  
E. Contrastive Pretraining Comparison Results 
We performed a comparison study to evaluate TimCLR with 
respect to SOTA CL methods such as SimCLR [32], Barlow 
Twins [33], and MoCo v3 [25] on downstream detection 
tasks. Specifically, we pretrain the methods on the NTU 
dataset for 100 epochs, for both the RGB and depth modality. 
The networks were finetuned using the procedure from 
Section V. The results are presented in Table III.  

Across all datasets, our RGB and depth TimCLR + 
YOLOv4 methods outperformed the other RGB and depth 
pretraining methods. We observed improvements with our 
RGB and depth TimCLR methods of up to: 1) 21% and 18% 
in AP under partial occlusions (MA/USAR TS2), 2) 30% and 
22% under lighting variations (USAR TS3), and 3) 6% for 
both RGB and depth on the IOD TS. These improvements 
under intraclass variations emphasize the advantage of our 

TimCLR in generating image pairs within a short temporal 
window to allow for the capturing and learning of features 
robust to intraclass variations. Non-parametric Kruskal-
Wallis and post-hoc Dunn tests performed on all datasets 
showed that our TimCLR + MYOLOv4 had a statistically 
significant higher AP than the other CL methods, 𝑝 < 0.001.  

VII. DISCUSSIONS 
Our proposed TimCLR + MYOLOv4 method outperformed 
the SOTA on both the person detection (Section VI.C) and 
contrastive pretraining (Section VI.E) experiments, 
demonstrating that our approach is effective for addressing 
the challenge of person detection under intraclass variations 
in diverse environments. While TimCLR can extract 
intraclass-invariant features by using video sequences for 
pretraining, MYOLOv4, similar to the existing person 
detection methods in Section IV.C, has been designed to use 
static images. Thus, it does not incorporate temporal context 
during real-time person detection and would not be able to 
handle full person occlusion scenarios. Existing datasets have 
also mainly focused on pose deformations, with limited 
instances of clothing deformations. It would be worthwhile to 
consider creating a dataset that also includes a diverse range 
of clothing variations for pretraining of our multimodal 
person detection architecture. 

VIII. CONCLUSIONS 
In this paper, we present a novel multimodal person detection 
architecture for mobile robots to address the robotic problem 
of person detection under intraclass variations. We introduce 
a new pretraining method TimCLR which learns person 
features which are invariant to natural variations in the 
environment, such as person and body part occlusions, pose 
deformations, and varying lighting. Our TimCLR generates 
contrastive image pairs by sampling natural variations from 
multimodal image sequences within a short temporal interval, 
in addition to data augmentation. These invariant person 

TABLE II ABLATION STUDY 
Dataset 

 
Method 

Mobility Aids (MA) USAR IOD 
Test Set 1 Test Set 2 

Occlusion 
Test Set 1 Test Set 2 

Occlusion+Deformation 
Test Set 3 
Illumination  

Test Set 

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 
TimCLR, data augmentation only 58.10 90.40 45.30 66.40 19.80 43.90 16.90 45.10 18.00 40.00 61.70 92.50 
TimCLR, natural variations only 48.70 90.30 40.40 64.90 18.10 41.80 17.40 42.80 16.20 37.50 60.10 91.70 
TimCLR, combined 60.10 94.30 49.20 75.30 22.30 45.80 21.10 49.60 20.20 44.40 63.40 96.70 
TimCLR, C3 Fusion  60.10 94.30 49.20 75.30 22.30 45.80 21.10 49.60 20.20 44.40 63.40 96.70 
TimCLR, C4 Fusion 57.40 90.10 46.00 65.70 20.20 43.70 19.40 48.70 18.30 41.10 60.70 93.10 
TimCLR, C5 Fusion 54.20 87.40 44.40 65.10 18.30 40.90 18.20 43.50 17.50 40.00 58.80 91.20 
TimCLR, no crossmodal loss 57.80 90.30 47.70 71.10 18.40 41.70 17.50 42.70 16.20 37.80 60.00 93.90 
TimCLR, with crossmodal loss 60.10 94.30 49.20 75.30 22.30 45.80 21.10 49.60 20.20 44.40 63.40 96.70 
 

TABLE III COMPARISON OF CONTRASTIVE PRETRAINING METHODS ON DOWNSTREAM PERSON DETECTION 
Dataset 

 
Method 

Mobility Aids (MA) USAR IOD 
Test Set 1 Test Set 2 

Occlusion 
Test Set 1 Test Set 2 

Occlusion+Deformation 
Test Set 3 
Illumination  

Test Set 

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 
RGB SimCLR + YOLOv4 54.10 88.10 43.40 70.20 15.30 35.00 14.60 28.10 14.50 28.30 58.30 92.40 
RGB Barlow Twins + YOLOv4 55.40 85.50 43.60 70.30 14.90 33.70 13.90 31.60 13.70 32.10 60.50 92.10 
RGB MoCo v3 + YOLOv4 55.90 87.40 44.40 70.11 15.50 35.80 14.90 34.40 15.10 34.20 60.50 91.90 
RGB TimCLR + YOLOv4 57.90 92.50 46.10 72.20 17.60 42.20 16.80 40.10 17.80 41.10 61.60 94.20 
Depth SimCLR + YOLOv4 42.00 81.50 35.50 65.10 17.30 41.30 17.60 46.70 15.80 32.50 58.40 88.40 
Depth Barlow Twins + YOLOv4 44.50 82.00 33.60 63.30 17.90 40.20 17.40 43.30 17.20 36.70 57.80 89.00 
Depth MoCo v3 + YOLOv4 44.70 87.50 35.20 65.10 18.30 41.90 17.80 43.50 17.60 37.80 59.80 89.50 
Depth TimCLR + YOLOv4 46.10 91.10 39.50 69.20 20.70 42.40 20.20 48.50 19.20 39.80 61.40 91.40 
RGB-D TimCLR + MYOLOv4 60.10 94.30 49.20 75.30 22.30 45.80 21.10 49.60 20.20 44.40 63.40 96.70 
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features are used by MYOLOv4 for robust detection of people 
under intraclass variations. Extensive experiments verified 
that our TimCLR + MYOLOv4 outperformed the existing 
detection methods in finding people in crowded and/or with 
varying lighting hospitals, university campuses, and cluttered 
USAR environments. Our ablation study validated the design 
choices of TimCLR, and our comparison study with SOTA CL 
methods showed that our TimCLR is more robust in learning 
person representations, even in the single-modality case. 
Future work includes integrating our detection architecture 
within a mobile robot for real-time person detection in 
varying human-centered environments.  
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